A Quantitative Platform for the Clinical Assessment of Biomarker Concentration

Clinical Need

15% of diabetic patients will contract foot ulcers \(^1\)

- \(\rightarrow\) 15-27% will require lower limb amputation
- \(\rightarrow\) Associated treatment costs upwards of \$50K

Proliferation of Diabetes in U.S.

\[\text{Per CDC} \]

Treatment Options:

- Dressings
- Compression stockings
- Topical Antibacterial Creams
- Hydrogel Treatments

Solution

- **Affinity based GNP binding**
- **2\(^o\) anti-CCL19 polyclonal antibodies** have affinity for multiple epitopes, permitting "sandwich" binding
- **1\(^o\) anti-CCL19 monoclonal antibodies** have strong affinity for one specific epitope on biomarker

Device Housing

1. Application port for consistent testing
2. Visualization window to measure binding distance
3. Wick port to press against test strip

Approach

- Confirm flow time within clinical restraints (<30 min)
- Establish primary biomolecule binding to nitrocellulose (NC)
- Bind visual labeling conjugate to secondary biomolecule
- Create housing for NC strip to meet size requirements
- Establish model correlating distance flowed on NC dependent on analyte conc.

Results & Impact

- **HABA - Avadin: Concentration to Distance**
- \(R^2 = 0.8525\)

- **Supported concentration-distance aspect of design**
- Developed significant portions of the intended design
- Project requires more optimization time/material costs